General Theorems for Numerical Approximation of Stochastic Processes on the Hilbert Space Ir

نویسنده

  • HENRI SCHURZ
چکیده

General theorems for the numerical approximation on the separable Hilbert space

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit theorems for infinite - dimensional piecewise deterministic Markov processes . Applications to stochastic excitable membrane models ∗

We present limit theorems for a sequence of Piecewise Deterministic Markov Processes (PDMPs) taking values in a separable Hilbert space. This class of processes provides a rigorous framework for stochastic spatial models in which discrete random events are globally coupled with continuous space-dependent variables solving partial differential equations, e.g., stochastic hybrid models of excitab...

متن کامل

Viscosity approximation methods for W-mappings in Hilbert space

We suggest a explicit viscosity iterative algorithm for nding a common elementof the set of common xed points for W-mappings which solves somevariational inequality. Also, we prove a strong convergence theorem with somecontrol conditions. Finally, we apply our results to solve the equilibrium problems.Finally, examples and numerical results are also given.

متن کامل

The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations

In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002